• 0 Posts
  • 19 Comments
Joined 1 year ago
cake
Cake day: August 4th, 2023

help-circle



  • No, the “non-fungibility” simply means that anyone who creates an NFT with the same link will be distinct from your link to the image, even if the actual URL is the same. Both NFTs can also be traced back to when they were created/minted because they’re on a blockchain, a property called provenance. If the authentic tokens came from a well known minting, you can establish that your token is “authentic” and the copy token is a recreation, even if the actual link (or other content) is completely identical.

    Nothing about having the “authentic” token would give you actual legal rights though.



  • No. Nvidia will be licensing the designs to mediatek, who will build out the ASIC/silicon in their scaler boards. That solves a few different issues. For one, no FPGAs involved = big cost savings. For another, mediatek can do much higher volume than Nvidia, which brings costs down. The licensing fee is also going to be significantly lower than the combined BOM cost + licensing fee they currently charge. I assume Nvidia will continue charging for certification, but that may lead to a situation where many displays are gsync compatible and simply don’t advertise it on the box except on high end SKUs.








  • I’m not assuming it’s going to fail, I’m just saying that the exponential gains seen in early computing are going to be much harder to come by because we’re not starting from the same grossly inefficient place.

    As an FYI, most modern computers are modified Harvard architectures, not Von Neumann machines. There are other architectures being explored that are even more exotic, but I’m not aware of any that are massively better on the power side (vs simply being faster). The acceleration approaches that I’m aware of that are more (e.g. analog or optical accelerators) are also totally compatible with traditional Harvard/Von Neumann architectures.





  • TCP has been amended in backwards incompatible ways multiple times since 1993. See e.g. RFCs 5681, 2675, and 7323 as examples.

    Plus, speaking TCP/IP isn’t enough to let you to use the web, which is what most people think of when you say “Internet”. That 1993 device is going to have trouble speaking HTTP/1.1 (or 1.0 if you’re brave) to load even the most basic websites and no, writing the requests by hand doesn’t count.



  • You have no idea how modern technology is produced. Any particular product is usually the result of dozens to thousands of iterations, some funded with public money and many not. Let’s take an example from your chart: DRAM. I actually don’t know when DARPA “developed” DRAM (since DARPA usually funds private companies to do development for them), but it must have been before 1970 when Intel designed the 1103 chip that got them started. Do you think that pre-1970s design is remotely similar to the DRAM operating on your device today? I’ll give you a hint: it’s not.

    And no, modern device development does not consist of gluing a bunch of APIs together. Apple maintains its own compilers, languages, toolchains, runtimes, hardware, operating systems, debugging tools, and so on. Some of that code had distant origins in open source (e.g. webkit), but that’s vastly different than publicly funded and those components are usually very different today.

    They’re failing to produce competitive modems because modern wireless is one of closest things humans have to straight up black magic. It’s extremely difficult to get right, especially as frequencies go up, SNR goes down, and we try to push things ever faster despite having effectively reached the Shannon limit ages ago.