As humanity’s furthest reach into the Universe so far, the two Voyager spacecraft’s well-being is of utmost importance to many. Although we know that there will be an end to any science…
The very accurate clock needed in this case is physically impossible as far as we know, there’s no way to measure it as far as our current understanding of physics goes.
Though if you can figure out a way you should publish a paper about it.
Can you cite some literature to back up that claim? Stating that something like acceptable clock synchronisation (a well established and appreciated method in the measurements of physical effects) is impossible in and of itself is something so bold that no one can just take your word for it.
It is impossible to synchronize the clocks in such a way that you can actually measure the speed of light with it due to time dilation unless you define beforehand how fast the speed of light is to calculate that time dilation.
The very accurate clock needed in this case is physically impossible as far as we know, there’s no way to measure it as far as our current understanding of physics goes.
Though if you can figure out a way you should publish a paper about it.
Can you cite some literature to back up that claim? Stating that something like acceptable clock synchronisation (a well established and appreciated method in the measurements of physical effects) is impossible in and of itself is something so bold that no one can just take your word for it.
It is impossible to synchronize the clocks in such a way that you can actually measure the speed of light with it due to time dilation unless you define beforehand how fast the speed of light is to calculate that time dilation.
See also This or, more accessibly “Synchronization conventions”